All Issue

2021 Vol.34, Issue 1

Research Paper

28 February 2021. pp. 1-8
Abstract
References
1
Alonso, F.D., Ferradas, E.G., Perez, J.F.S., Aznar, A.M., Gimeno, J.R. (2006) Characteristic Overpressure-Impulse-Distance curves for Vapour Cloud Explosions Using the TNO Multi-Energy Model, J. Haz. Mater., 137(2), pp.734~741. 10.1016/j.jhazmat.2006.04.00516704903
2
ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineers, Virginia, p.300.
3
Assael, M.J., Kakosimos, K.E. (2010) Fires, Explosions, and Toxic Gas Dispersions, CRC press, New York, p.346. 10.1201/9781439826768PMC3001954
4
Autodyn (2005) Autodyn Theory Manual Revision 4.3, Century Dynamics, p.235.
5
CCPS (1996) Guidelines for Evaluating Process Plant Buildings for External Explosions and Fires, CCPS, New York, p.189.
6
CPR14E (2005) Methods for the Calculation of Physical Effects, TNO, Netherlands, p.870.
7
Jacques, E., Lloyd, A., Saatcioglu, M. (2013) Predicting Reinforced Concrete Response to Blast Loads, Canadian J. Civ. Eng., 40(5), pp.427~444. 10.1139/L2012-014
8
Kim, H.S., Ahn, H.S., Ahn, J.G. (2014) Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members, J. Archit. Inst, Korea Struct. & Constr., 30(3), pp.21~28. 10.5659/JAIK_SC.2014.30.3.021
9
Mishra, K.B., Wehrstedt, K.-D., Krebs, H. (2014) Amuay Refinery Disaster: The Aftermaths and Challenges Ahead, Fuel Proc. Tech., 119, pp.198~203. 10.1016/j.fuproc.2013.10.025
10
Ngo, T., Lumantarna, R., Whittaker, A., Mendis, P. (2015) Quantification of the Blast-Loading Parameters of Large-Scale Explosions, J. Struct. Eng., 141(10), pp.1~11. 10.1061/(ASCE)ST.1943-541X.0001230
11
PDC-TR 06-08 (2008) Single Degree of Freedom Structural Response Limits for Antiterrorism Design, US Army Corps of Engineers, p.35.
12
Rashid, Z.A., Alias, A.B., Hamid, K.H.K., Bani, M., Harbawi, M.E. (2015) Analysis the Effect of Explosion Efficiency in the TNT Equivalent Blast Explosion Model, ICGSCE 2014, pp.381~390. 10.1007/978-981-287-505-1_45
13
RR512 (2007) Review of Significance of Societal Risk for Proposed Revision to Land Use Planning Arrangements for Large Scale Petroleum Storage Sites, Health and Safety Executive, p.40.
14
RR718 (2009) Buncefield Explosion Mechanism Phase 1, Health and Safety Executive, p.226.
15
RR1113 (2017) Review of Vapour Cloud Explosion Incidents, Health and Safety Executive, p.326.
16
Sharma, R.K., Gurjar, B.R., Wate, S.R., Ghuge, S.P., Agrawal, R. (2013) Assessment of an Accidental Vapour Cloud Explosion: Lessons from the Indian Oil Corporation Ltd. Accident at Jaipur, India, J. Loss Prev. Process. Ind., 26, pp.82~90. 10.1016/j.jlp.2012.09.009
17
UFC3-340-02 (2008) Structures to Resist the Effects of Accidental Explosions, DoD, p.1943.
18
Van den Berg, A.C. (1985) The multi-energy method: A Framework for Vapour Cloud Explosion Blast Prediction, J. Haz. Mater., 12(1), pp.1~10. 10.1016/0304-3894(85)80022-4
19
Weidlinger (2009) Characterising the Response of Reinforced Concrete Cladding Panels to Vapour Cloud Explosions, Weidlinger Associates Ltd, p.66.
20
Zhu, R., Li, X., Hu, X., Hu, D. (2020) Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network, Sustainability, 12(1), pp.1~20. 10.3390/su12010137
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 34
  • No :1
  • Pages :1-8
  • Received Date : 2020-08-03
  • Revised Date : 2020-11-03
  • Accepted Date : 2020-11-24