All Issue

2015 Vol.28, Issue 1
2015. pp. 1-8
Abstract
References
1
Anderson T.L. 2005Fracture Mechanics, 3rd ed. Taylor &Francis,New York
2
ASTM E647-13a 2013Standard Test Method for Measurement of Fatigue Crack Growth RatesAnnual Book of ASTM Standards, vol. 3.01ASTM International
3
A., Benallal, R., Billardon and J., Lemaitre, 1991. Continuum Damage Mechanics and Local Approach to Fracture : Numerical Procedures. Comput. Methods Appl. Mech. &Eng., 92, pp.141-155.
10.1016/0045-7825(91)90236-Y
4
S.R., Bodner and K.S., Chan, 1986. Modeling of Continuum Damage for Application in Elastic- Viscoplastic Constitutive Equations. Eng. Fract. Mech., 25, pp.705-712.
10.1016/0013-7944(86)90034-2
5
Bodner S.R. 2002Unified Plasticity for Engineering Applications1st ed., Kluwer Academic &Plenum PublishersNew York
6
A., de-Andres, J.L., Perez and M., Ortiz, 1999. Elastoplastic Finite Element Analysis of Three- dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading. Int. J. Solids &Struct., 36, pp.2231-2258.
10.1016/S0020-7683(98)00059-6
7
D.R., Hayhurst and F.A., Leckie, 1977. Constitutive Equations for Creep Rupture. Acta Mater., 25, pp.1059-1070.
10.1016/0001-6160(77)90135-3
8
J.W., Kwon and H.T., Yang, 2002. Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode. Trans. Korean Soc. Mach. Tool Eng., 11, pp.102-109.
9
C.S., Lee, B.M., Yoo, M.H., Kim and J.M., Lee, 2013. Viscoplastic Damage Model for Austenitic Stainless Steel and Its Application to the Crack Propagation Ploblem at Cryogenic Temperatures. Int. J. Damage Mech, 22, pp.95-115.
10.1177/1056789511434816
10
Lemaitre J. Chaboche J.L. 1990Mechanics of Solid Materials1st ed., Cambridge University Press
10.1017/CBO9781139167970PMC1131126
11
Lemaitre J. 1992A Course on Damage Mechanics2nd ed. Springer
10.1007/978-3-662-02761-5
12
Lemaitre J. Desmorat R. 2005Engineering Damage Mechanics1st ed., Springer
13
N., Moes, J., Dolbow and T., Belytschko, 1999. A Finite Element Method for Crack Growth without Remeshing. Int. J. Numer. Methods Eng., 46, pp.131-150.
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
14
Mishnaevsky L.Jr. 2007Computational Meso- mechanics of Composites1st ed., John Wiley &SonsNew York
15
K.L., Roe and T., Siegmund, 2003. An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation. Eng. Fract. Mech., 70, pp.209-232.
10.1016/S0013-7944(02)00034-6
16
M., Stolarska, D.L., Chopp, N., Moes and T., Belytschko, 2001. Modelling Crack Growth by Level Sets in the Extended Finite Element Method. Int. J. Numer. Methods. Eng., 51, pp.943-960.
10.1002/nme.201
17
B., Yang, S., Mall and K., Ravi-Chandar, 2001. A Cohesive Zone Model for Fatigue Crack Growth in Quasibrittle Materials. Int. J. Solids &Struct., 38, pp.3927-3944.
10.1016/S0020-7683(00)00253-5
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 28
  • No :1
  • Pages :1-8
  • Received Date : 2014-07-26
  • Revised Date : 2014-09-02
  • Accepted Date : 2014-10-22
Journal Informaiton Journal of the Computational Structural Engineering Institute of Korea Journal of the Computational Structural Engineering Institute of Korea
  • NRF
  • KOFST
  • crossref crossmark
  • crossref cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close