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1. Introduction

An automated dynamic structural analysis module is an 

essential component of a structural integrated system. The 

analysis module must provide prompt real time responses so that 

timely actions such as evacuation or warnings related to 

seriousness posed by the structural system may proceed. The 

finite element method is an approximate structural analysis 

method most widely used in the world. The popularity of the 

method is partly due to ease of use; however, the user must 

provide finite element mesh and the number of elements in this 

mesh dictates the required computation time and the quality of 

the mesh influences error in the results (Bathe and Wilson, 1976; 

Belytschko et al., 1996; Yoon, 2014; Zienkiewcz et al., 2005). 

For dynamic problems analyzed in time domain, the meshes may 

need to be modified at various time steps; for practical problems, 

this may be at several hundred or thousand steps. For automation, 

many meshes need to be self generated and adaptive mesh 

generation schemes have become an important part in automated 

and complex dynamic finite element analyses of structures 

(Yoon, 2019; 2023; Zhu et al., 1991).

In this paper, an automatic adaptive mesh generation scheme 

for dynamic finite element analyses of structures is explained. 

Representative strain values are used for error estimates and 
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Abstract

An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module 

must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the 

structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to 

its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with 

the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation 

scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh 

generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for 

error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a 

few hundred or thousand steps. The algorithm’s specifics are demonstrated through a standard cantilever beam example subjected to a 

concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples 

illustrate the adaptive algorithm’s capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, 

the study highlights the potential for the scheme’s effective application in complex structural dynamic problems, such as those subjected to 

seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and 

reliability of the proposed adaptive mesh generation scheme.
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optimal combinations (the r-h method) of the h-method (node 

movement) and the r-method (element division) are utilized for 

efficient mesh refinements (Jeong and Yoon, 2003; Zienkiewcz 

and Zhu, 1987). To correct or eliminate overly distorted elements, 

a coefficient that depends on the shape of element is used. The 

specifics of the algorithm is demonstrated through a standard 

cantilever beam example under concentrated load at the free end 

and a simple portal frame example is used to show the robustness 

of the generated meshes. 

2. The r-h method of adaptive mesh generation for 

dynamics

2.1 Automation of finite element analysis

The input data required for a finite element analysis are the 

following: (1) problem description data, (2) element types and 

(3) finite element meshes. Increase in number of elements in a 

mesh increases computational time and high quality of mesh 

decreases error in the results. Quality of mesh is related to the 

robustness of all elements in a mesh and overly distorted 

elements in a mesh reduce this robustness. Often in practice, 

uniform and overly fine mesh is used through out the analysis; 

this may be acceptable in many cases but not recommended for 

time domain dynamics and nonlinear problems because a large 

number of elements requires increase in real time computation 

and undetected distorted element shapes may increase errors in 

the results.

An adaptive mesh generation scheme uses error estimates 

given a mesh and generates a new improved mesh based on this 

error. The three basic techniques for mesh refinement are: (1) the 

r-method where a node is moved, (2) the h-method where an 

element is divided into smaller elements of same shape, and (3) 

the p-method where the polynomial in the shape function of the 

used element type is altered. The p-method involves pro-

gramming complexities not justified by effectiveness and thus 

this method is seldom used. The r-method and the h-method 

when used alone has apparent limitations; so in general, the 

combinations of the r-method and the h-method are used (Yoon, 

2019; Zienkiewcz and Zhu, 1987). Computation efficiency requires 

optimal combination strategy and a reasonable starting mesh. 

For accuracy of analysis results, overly distorted elements must 

be eliminated.

2.2 Gauss point strain values as representative error estimates

Error and computation time in a finite element analysis 

depend on the types of elements used and and the finite element 

mesh. An adaptive mesh generation scheme attempts to 

automate mesh generation and the scheme needs an effective 

error estimation of a given mesh (McFee and Giannacopoulos, 

2001; Ohnimus et al., 2001; Yoon, 2019). Exact solutions for 

general engineering problems are not known and thus estimating 

error is inherently a difficult problem. Often norm of a matrix is 

used to express error of a mesh where the matrix includes values 

of stress, strain and displacements. The norm of error ∥∥  in 

the domain Ω is as follows:

∥∥


 (1)

where  and  are the exact values for stress and strain; and the 

symbols  ,   represent the solutions from the finite element 

analysis. The following Eqs. (2) and (3) are expressions for the 

representative strains of element defined as the standard 

deviations of the strains at the Gauss points in the element; these 

values are already computed in the previous step of the finite 

element analysis procedure. The representative strains of 

element i for x-y planar problems are as follows:

∥∥  


  


  



  


    (2)

∥∥  ∥∥ ∥∥ ∥∥×



(3)

Here, ∥∥ is the norm of the  direction(x, y and xy for 

planar problems where xy is the shear component) standard 

deviation of the strain,  is Gauss points in   direction,  is 

the   direction strain of Gauss point j, 
 is the   direction strain, 

and ∥∥  is the norm of the representative strain of element  

which is used as error for the element, 

 is the area of element , 

and 

 is the total area. The values of element  are normalized 

with respect to relative area (

/


) and the relative errors for all 

elements are used to identify elements to be refined. Previous 

investigations have shown that these procedures are effective 
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and computationally efficient in identifying elements to be 

divided(h-method) or to move attached nodes(r-method); note 

that Eqs. (2) and (3) do not attempt to accurately compute the 

error defined in Eq. (1) (Jeong and Yoon, 2003; Yoon, 2019).

2.3 Generation of a new mesh

A new mesh is generated by alternating between the r-method 

and the h-method. The r-method moves the node at coordinates 

(x,y) to a new adapted coordinates (, ):

 



  



∥∥


  



∥∥
(4)

 



  



∥∥


  



∥∥
(5)

Here, ,  are the element ’s center coordinates, and na is 

the number of elements attached to the node. For nodes on the 

boundary, Eqs. (4) and (5) should be replaced by (x,y) coordi-

nates of the closest point on the boundary. Distortion of an 

element shape violating the tolerable limit is checked by the 

shape factor for the element. Shape factor of a quadrilateral 

element  with boundary length Li is defined as (Eq. (6)):

 



(6)

The above factor’s maximum value is 1 which is for a square. 

Distorted quadrilaterals’ 

 is less than 1 and the value decreases 

as the distortion increases. Quadrilaterals with 

 less than 

0.8285 (

 for a right equilateral triangle) should never be used. 

A good mesh should have all element shapes with appro-

ximately equal lengths and angles. 

 for these shapes are close 

to one. Meshes with all 

s near 1 throughout the analyses should 

produce reliable results. Shape factors between 0.95 and 1.0 are 

appropriate and the r-method should limit node movements with 

a restriction on 

 to be above 0.95.

The h-method divides an element into smaller elements with 

the same shape. The elements to be divided are based on d, 

called the discretization parameter, defined as (Eq. (7)):

 
max

∙∥∥     
(7)

Here,   is constant to be set,  ∥∥       is the mean 

of strains, and 
max

 is the the applied load or the inertia force’s 

largest value. A parametric study on   has shown that values 

between 14.0 and 15.0 are appropriate for dynamics or earthquake 

engineering analysis problems. Values of   outside this range 

causes increase computations for no increase in accuracy (Yoon, 

2014, Zu et al., 1991).

The r-h method which combines the r-method and the 

h-method achieves effectiveness from combining strategies. 

Many means of combination strategies have been studied (Yoon, 

2014, Zu et al., 1991). The combination scheme in this study 

uses the dispersion parameter D, which is the difference between 

the mean and the mode of normalized strains (Eq. (8)):

   ∥∥
   mod ∥∥

  (8)

D dictates alteration ratio of the r-method and the h-method. 

A D value around 19 sets this to about 3; a lower value increases 

the ratio, and a higher value decreases the ratio. In reducing the 

overall error, subdivision of element (the h-method) is much 

more effective as the number of resulting elements may be from 

1 to 4, 16, 64 or higher in a single step. However, node movement 

(the r-method) is needed to create new shapes. A preset tolerance 

ends refinement. This tolerance is the change in the sum of the 

strain values and typically tolerance of 0.005% is preset.

2.4 Time domain dynamic analysis equations

The dynamic analysis may be divided into time domain and 

frequency domain analyses and this study adopts time domain 

analysis based on the widely used Newmark-  method where 

the numerical iteration equations are the following (Newmark, 

1959)(Eqs. (9), (10)): 

    ∆  ∆






   




 (9)

 
  ∆       (10)
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Here,  , 
  and  are the th step displacement, velocity, 

and acceleration vectors and , 
and are the ′th 

step corresponding quantities; ∆ is the time step size;  and  

are parameters where 1/4 and 1/2 are the recommended values 

for stability of the algorithm.

In matrix form, equilibrium equations for the ′th step 

becomes (Eqs. (11), (12), (13)):

′  ′ (11)

The matrices ′  and ′ represent the following:

′   


∆


 (12)

′
  

 
  




∆
 





 ∆


 


 ∆






 (13)

Here, ,  are the stiffness and mass matrices, and  is 

the ′th time step force vector.

3. Case Studies

3.1 A cantilever beam subjected to a dynamic load

A cantilever beam subjected to dynamic load P(t) is shown in 

Fig. 1. The dimensions of the beam are shown in the figure. The 

beam is a prismatic 100cm deep rectangular member; Young’s 

modulus E is 212 × 109N/m2; Poisson’s ratio v is 0.33, and the 

unit mass is 7.86 × 103kg/m3. Plane stress four node quadrilateral 

bilinear element is used in the analysis. The loading function P(t) 

is a one period of sinusoid given by

  sin    ∼sec (14)

∆, the time step, selected for the analysis is 0.0025 seconds. 

This yields 2000 steps for 5 seconds where the first one second is 

forced vibration followed by four seconds of free vibration(no 

external loading). The following values are set for parameters 

and factors: D = 19; d = 14; and Si = 0.98. An expert system is 

used to obtain the initial mesh. The terminating tolerance is set 

to 0.005%. On average, a new mesh is generated after every 0.01 

seconds; i.e., at every 4 time steps. A sample progress of strain 

deviation values in the initial steps of the adaptive mesh 

generation including the alteration of the r-method and the 

h-method are shown on Table 1. After about nine iterations of 

refinement, the adaptive mesh scheme satisfies the iteration 

tolerance limit.

A series of meshes automatically generated are shown in Fig 

2. Fig. 2(a) shows the expert system generated initial mesh. Fig. 

2(b) shows the generated final mesh at t = 0.24 which is the time 

of maximum deflection during forced vibration (t = 0~1s). Fig. 

2(c) shows the generated mesh at t = 4.70 which is the time of 

maximum deflection during free vibration (t=1~5s). In Fig. 2(c), 

the overlapped deflected shape is also shown. The generated 

meshes show the agreement with the basic finite element mesh 

concept where fine meshes should be around the loading(see 

Fig. 2(b)) and the anticipated highly stressed areas(fixed end 

part, especially top and bottom). The meshes also show that 

there are no overly distorted elements. In practice, a uniform, 

and in many cases overly fine mesh is used throughout the Fig. 1  Cantilever beam and loading P(t)

Table 1. A Progression of strain deviation values

Adaptive Step Method
Maximum Strain 

Deviation

Sum of Strain 

Deviation

Change in Sum of Strain Deviation 

from previous Step (%)

0 0.00001910 0.0004492 -

1-initial h 0.00000620 0.0003461 29.78

2 h 0.00000100 0.0002533 36.63

3 r 0.00000092 0.0002510 0.9196

4 r 0.00000081 0.0002502 0.3584

5-last h 0.00000021 0.0001420 43.22
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analysis such as the one shown in Fig. 3. A mesh of identical 

square shapes totaling 1600 elements for the cantilever are used 

to simulate this and the result from this is ‘Engineering 

Solution’. To estimate more accurate result without an adaptive 

scheme, a finer uniform mesh with 6400 identical squares obtained 

by dividing each element used in Engineering Solution into four 

identical square elements is formed. The solution using this is 

‘Very Fine Mesh Solution’. The solution from the automated 

adaptive meshes is ‘Strategy Solution’. In the automatically 

generated meshes, the number of elements are between 560 and 

826. The specifications for the personal computer used for the 

analyses are the following: 64bit Intel Core17-6700CPU; 32.0 

GB RAM; Windows 10Pro 64bit. Comparisons of middle point 

vertical displacements of the free end and middle point normal 

stresses of the fixed end are shown in Fig. 4. Close agreements 

among the three solutions are depicted in the the figure; 

however, if the output data from Very Fine Solution are assumed 

to have no error, errors from Engineering Solution are much 

bigger than the errors from Strategy Solution. Comparative 

errors and computation times are shown in Table 2. The total 

errors shown in Table 2 are computed by defining them as the 

square root of the sum of errors at selected points which are 

middle point of free end for displacement and middle, top and 

bottom points at the fixed end for stresses. The values on the 

table show that with the automation, displacement and stress 

errors have been significantly reduced (3.592% to 0.321% for 

Fig. 2  Automatically generated finite element meshes for 

cantilever example

Fig. 3  Uniform mesh commonly used (cantilever example)

(a) Vertical displacement of the free end (middle)

(b) Mid-horizontal normal stress at the fixed end (top)

(c) Mid-vertical normal stress at the fixed end (middle)

Fig. 4  Comparisons of displacement and stress solutions
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total displacement and 2.822% to 0.222% for stress) with a 

decrease of 62.96% in real run time; uniform mesh used for the 

entire structure to obtain Very Fine Solution needed much larger 

increase in real run time of 266.66%. Even as the computing 

power of computers is increasing continuously, automation still 

needs efficiency of computation in every step of the procedure in 

order for the method to be practical and to produce realistic real 

time responses, and this case study shows the effectiveness of 

Strategy Solution.

3.2 Adaptive meshes generated for a portal example

Fig. 5 shows dimensions of a portal frame with a loading P(t) 

at the top mid point (point B in the figure). The loading P(t) is 

the same as the one considered in the cantilever example in 

Section 3.2, i.e., one sinusoid given in Eq. (14) for one second 

and free vibration for four seconds following. Fig. 6 shows 

adaptively generated meshes. The mesh generated at t = 0.275 

seconds when the vertical deflection of point A is at the 

maximum is shown in Fig. 6(a). This is during forced vibration 

and the number of elements is the maximum at 840. Fig. 6(b) 

shows the mesh where the number of elements is the minimum 

Table 2. Run times and error

Solution
Total Displacement Error %

vs Very Fine Mesh Solution

Total Stress Error %

vs Very Fine Mesh Solution

Run Time

(% vs Engineering Solution)

Very Fine Mesh Solution

(6400elements)

0.0%

(assumed no error)

0.0%

(assumed no error)

5min. 56sec.

(266.66% increase)

Engineering Solution

(1600elements)
3.592% 2.822%

1min. 48sec.

(0.0%)

Strategy Solution

(560-826elements)
0.321% 0.221%

42sec.

(62.96% decrease)

Fig. 5  Dimensions of portal example

(a) Maximum number of elements

[t=0.275s, 840 elements, forced vibration]

(b) Minimum number of elements

[t=0.760s, 760 elements, free vibration]

Fig. 6  Generated adaptive meshes for portal example
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at 760. This is at t = 3.760 during free vibration.

Stress results from a properly coded finite element program 

must pass patch test which in simple terms mean ‘constant stress 

must be exactly reproduced.’ Theoretically, the variations in 

stress values within an element are the sources of error in the 

finite element results. Thus a good mesh avoids distorted 

element shapes and the fineness of mesh is directly proportional 

to the gradient of stress so that the stress in a given element is 

close to a constant value. In regions where the stress is expected 

to be constant or stress free, element sizes may be large and in 

regions around stress concentration (high stress gradient), the 

elements must be very fine. In Fig. 6, outer corners of the portal 

are stress free regions and the generated meshes here have large 

elements. Inner corners and and under the load areas(see Fig. 

6(a)) are stress concentration regions and the meshes are very 

fine here. The value of stress(largeness) and displacement by 

themselves are irrelevant in forming a good finite element mesh. 

4. Conclusions

Structural analysis automation is an important ingredient of a 

hazard mitigation system related to architectural and civil 

structures. For automation, the needed finite element mesh 

generation scheme for finite element analysis of a structures is 

presented. The specified procedure for the r-h method based 

adaptive mesh generation is efficient in terms of real time 

without any significant decrease in accuracy of the solutions. 

The algorithm utilizes the commonly known finite element 

related concepts such as the h-method and the r-method of mesh 

refinement, shape factors for distortion of element shapes, and 

strain deviations for estimation of error; the computational time 

required for incorporating these concepts are small. The case 

study of a cantilever dynamics example shows specifics of the 

procedure. The generated adaptive meshes for the portal frame 

example show the appropriateness of the procedure where the 

generated fine meshes are shown to be around high stress 

gradient areas, and coarse meshes are in the constant or zero 

stress regions. The automation schemes may be used in the 

structural analysis module in any integrated system or in any part 

of nonlinear structural analysis and general dynamic analysis of 

a structure based on the finite element method. The procedure is 

general enough to be used for real time numerical computation 

of responses of large complicated structures subjected to real 

time dependent loads such as earthquakes and extreme weather 

conditions as efficient and accurate automated analyses of these 

dynamic and nonlinear problems are becoming an essential part 

of today’s integrated hazard mitigation systems. The further 

development of an expert system that produces more powerful 

initial mesh and use of that expert system to generate more 

effective initial mesh should improve the performance of 

automation.
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요  지

구조물의 동적 해석 자동화는 구조 통합 시스템에서 중요한 역할을 한다. 해석 결과에 따른 신속한 대피 또는 경고 조치가 신속하게 

이루어지도록 해석 모듈은 짧은 실시간에 해석 결과를 출력해야 한다. 구조 해석법으로 세계적으로 가장 많이 사용되는 방법은 유한

요소법이다. 유한요소법이 널리 사용되는 이유 중 하나는 사용의 편리다. 그러나 사용자가 유한요소망을 입력해야 하는데 요소망의 

요소 수는 계상량과 정비례하고 요소망의 적절성은 에러와 연관된다. 본 연구는 시간 영역 동적 해석에서 전 단계 해석 결과를 사용하

여 계산된 대표 변형률 값으로 오차를 평가하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하

는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보와 간단한 프레임 예제를 통하여 적절한 요소망 형성, 정확성, 그리고 연

산 효율성을 검증하였다. 이 방법의 간단함이 지진 하중, 풍하중, 비선형 해석 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용

될 수 있는 것을 보여 준다.

핵심용어 : 유한요소해석 자동화, 적응적 요소망 형성, 가우수 점 오차 평가, 동적 유한요소해석


