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Abstract

An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module
must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the
structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to
its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with
the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation
scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh
generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for
error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a
few hundred or thousand steps. The algorithm’s specifics are demonstrated through a standard cantilever beam example subjected to a
concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples
illustrate the adaptive algorithm’s capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover,
the study highlights the potential for the scheme’s effective application in complex structural dynamic problems, such as those subjected to
seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and
reliability of the proposed adaptive mesh generation scheme.
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1. Introduction

An automated dynamic structural analysis module is an
essential component of a structural integrated system. The
analysis module must provide prompt real time responses so that
timely actions such as evacuation or warnings related to
seriousness posed by the structural system may proceed. The
finite element method is an approximate structural analysis
method most widely used in the world. The popularity of the
method is partly due to ease of use; however, the user must
provide finite element mesh and the number of elements in this

mesh dictates the required computation time and the quality of

the mesh influences error in the results (Bathe and Wilson, 1976;
Belytschko et al., 1996; Yoon, 2014; Zienkiewcz et al., 2005).
For dynamic problems analyzed in time domain, the meshes may
need to be modified at various time steps; for practical problems,
this may be at several hundred or thousand steps. For automation,
many meshes need to be self generated and adaptive mesh
generation schemes have become an important part in automated
and complex dynamic finite element analyses of structures
(Yoon, 2019; 2023; Zhu et al., 1991).

In this paper, an automatic adaptive mesh generation scheme
for dynamic finite element analyses of structures is explained.

Representative strain values are used for error estimates and
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optimal combinations (the r-h method) of the h-method (node
movement) and the r-method (element division) are utilized for
efficient mesh refinements (Jeong and Yoon, 2003; Zienkiewcz
and Zhu, 1987). To correct or eliminate overly distorted elements,
a coefficient that depends on the shape of element is used. The
specifics of the algorithm is demonstrated through a standard
cantilever beam example under concentrated load at the free end
and a simple portal frame example is used to show the robustness

of the generated meshes.

2. The r—h method of adaptive mesh generation for
dynamics

2.1 Automation of finite element analysis

The input data required for a finite element analysis are the
following: (1) problem description data, (2) element types and
(3) finite element meshes. Increase in number of elements in a
mesh increases computational time and high quality of mesh
decreases error in the results. Quality of mesh is related to the
robustness of all elements in a mesh and overly distorted
elements in a mesh reduce this robustness. Often in practice,
uniform and overly fine mesh is used through out the analysis;
this may be acceptable in many cases but not recommended for
time domain dynamics and nonlinear problems because a large
number of elements requires increase in real time computation
and undetected distorted element shapes may increase errors in
the results.

An adaptive mesh generation scheme uses error estimates
given a mesh and generates a new improved mesh based on this
error. The three basic techniques for mesh refinement are: (1) the
r-method where a node is moved, (2) the h-method where an
element is divided into smaller elements of same shape, and (3)
the p-method where the polynomial in the shape function of the
used element type is altered. The p-method involves pro-
gramming complexities not justified by effectiveness and thus
this method is seldom used. The r-method and the h-method
when used alone has apparent limitations; so in general, the
combinations of the r-method and the h-method are used (Yoon,
2019; Zienkiewcz and Zhu, 1987). Computation efficiency requires
optimal combination strategy and a reasonable starting mesh.
For accuracy of analysis results, overly distorted elements must

be eliminated.
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2.2 Gauss point strain values as representative error estimates

Error and computation time in a finite element analysis
depend on the types of elements used and and the finite element
mesh. An adaptive mesh generation scheme attempts to
automate mesh generation and the scheme needs an effective
error estimation of a given mesh (McFee and Giannacopoulos,
2001; Ohnimus et al., 2001; Yoon, 2019). Exact solutions for
general engineering problems are not known and thus estimating
error is inherently a difficult problem. Often norm of a matrix is
used to express error of a mesh where the matrix includes values
of stress, strain and displacements. The norm of error | E'll in

the domain (2is as follows:
|\E\|=f(e—$)T(a—c§)dQ (1)
2

where ¢ and e are the exact values for stress and strain; and the
symbols ¢, € represent the solutions from the finite element
analysis. The following Egs. (2) and (3) are expressions for the
representative strains of element defined as the standard
deviations of the strains at the Gauss points in the element; these
values are already computed in the previous step of the finite
element analysis procedure. The representative strains of

element i for x-y planar problems are as follows:

k= zyxy ()

lell,={llell,+ lel

4;
w T el m/} X Z 3)

Here, Il el ;, is the norm of the % direction(x, y and xy for
planar problems where xy is the shear component) standard
deviation of the strain, Mgk is Gauss points in % direction, €1 is
the % direction strain of Gauss point j, e,t, is the & direction strain,
and Il e Il ; is the norm of the representative strain of element ¢
which is used as error for the element, A4, is the area of element ¢,
and 4, is the total area. The values of element % are normalized
with respect to relative area (4,/A,) and the relative errors for all
elements are used to identify elements to be refined. Previous

investigations have shown that these procedures are effective



and computationally efficient in identifying elements to be
divided(h-method) or to move attached nodes(r-method); note
that Egs. (2) and (3) do not attempt to accurately compute the
error defined in Eq. (1) (Jeong and Yoon, 2003; Yoon, 2019).

2.3 Generation of a new mesh

A new mesh is generated by alternating between the r-method
and the h-method. The r-method moves the node at coordinates

(x,y) to a new adapted coordinates (z,, y,):

T, = “

Y= ®)

Here, z

> Y, are the element 7’s center coordinates, and #, is
the number of elements attached to the node. For nodes on the
boundary, Egs. (4) and (5) should be replaced by (x,y) coordi-
nates of the closest point on the boundary. Distortion of an
element shape violating the tolerable limit is checked by the
shape factor for the element. Shape factor of a quadrilateral

element 7 with boundary length L; is defined as (Eq. (6)):

JA

5= 0251,

(6)

The above factor’s maximum value is 1 which is for a square.
Distorted quadrilaterals’ S; is less than 1 and the value decreases
as the distortion increases. Quadrilaterals with S; less than
0.8285 (S; for a right equilateral triangle) should never be used.
A good mesh should have all element shapes with appro-
ximately equal lengths and angles. S; for these shapes are close
to one. Meshes with all S;s near 1 throughout the analyses should
produce reliable results. Shape factors between 0.95 and 1.0 are
appropriate and the r-method should limit node movements with
arestriction on .S; to be above 0.95.

The h-method divides an element into smaller elements with

the same shape. The elements to be divided are based on d,

i
12

called the discretization parameter, defined as (Eq. (7)):

o« meanlllell 1l e
P

max

d=

Here, v is constant to be set, mean| Il e || ] is the mean

initial
of strains, and P, is the the applied load or the inertia force’s
largest value. A parametric study on « has shown that values
between 14.0 and 15.0 are appropriate for dynamics or earthquake
engineering analysis problems. Values of o outside this range
causes increase computations for no increase in accuracy (Yoon,
2014, Zu et al., 1991).

The r-h method which combines the r-method and the
h-method achieves effectiveness from combining strategies.
Many means of combination strategies have been studied (Yoon,
2014, Zu et al., 1991). The combination scheme in this study
uses the dispersion parameter D, which is the difference between

the mean and the mode of normalized strains (Eq. (8)):
D= |mean[normalized |l e |l ;] = mode [normalized Il e |l ;]| (8)

D dictates alteration ratio of the r-method and the h-method.
A D value around 19 sets this to about 3; a lower value increases
the ratio, and a higher value decreases the ratio. In reducing the
overall error, subdivision of element (the h-method) is much
more effective as the number of resulting elements may be from
1to4, 16, 64 or higher in a single step. However, node movement
(the r-method) is needed to create new shapes. A preset tolerance
ends refinement. This tolerance is the change in the sum of the

strain values and typically tolerance of 0.005% is preset.
2.4 Time domain dynamic analysis equations

The dynamic analysis may be divided into time domain and
frequency domain analyses and this study adopts time domain
analysis based on the widely used Newmark-3 method where
the numerical iteration equations are the following (Newmark,
1959)(Egs. (9), (10)):

Uy = u; + (At)i% + (At)Q{(% - B

u; + By )

u; = u; + (At) {(1 — Y, + 7{%‘,“} (10)
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Table 1. A Progression of strain deviation values

Adaptive Step Method Maximl?m. Strain Sum O.f Sftrain Change in Sum .of Strain Deviation
Deviation Deviation from previous Step (%)
0 0.00001910 0.0004492 -
1-initial 0.00000620 0.0003461 29.78
2 h 0.00000100 0.0002533 36.63
3 r 0.00000092 0.0002510 0.9196
4 r 0.00000081 0.0002502 0.3584
5-last h 0.00000021 0.0001420 4322

Here, u,, di and ili are the 7th step displacement, velocity,
and acceleration vectors and u, , |, u,, ;and u, , ,are the i +1'th
step corresponding quantities; At is the time step size; 8 and ~y
are parameters where 1/4 and 1/2 are the recommended values
for stability of the algorithm.

In matrix form, equilibrium equations for the i+ 1'th step
becomes (Egs. (11), (12), (13)):

Ku = Fiyy )

The matrices X" and F', , | represent the following:

K=K o (12)
= M, 2, 4L - %,
iﬂfﬁlmmyﬁﬂgh+@ @m%]aa

Here, K&, K are the stiffness and mass matrices, and 7, is

the 7+ 1’th time step force vector.

3. Case Studies

3.1 A cantilever beam subjected to a dynamic load

A cantilever beam subjected to dynamic load P(t) is shown in

Fig. 1. The dimensions of the beam are shown in the figure. The

P(t)

200cm

A

}1 ;|

800cm |

Fig. 1 Cantilever beam and loading P(t)

52 TN TZIEE ==

linal

I X373 X1=(2024.2)

beam is a prismatic 100cm deep rectangular member; Young’s
modulus E is 212 x 10°N/m?; Poisson’s ratio v is 0.33, and the
unit mass is 7.86 x 10°kg/m’. Plane stress four node quadrilateral
bilinear element is used in the analysis. The loading function P(t)

is a one period of sinusoid given by
P(t) = —500sin(27t) N; t =0 ~ Lsec. (14)

At, the time step, selected for the analysis is 0.0025 seconds.
This yields 2000 steps for 5 seconds where the first one second is
forced vibration followed by four seconds of free vibration(no
external loading). The following values are set for parameters
and factors: D = 19; d = 14; and S; = 0.98. An expert system is
used to obtain the initial mesh. The terminating tolerance is set
to 0.005%. On average, a new mesh is generated after every 0.01
seconds; i.e., at every 4 time steps. A sample progress of strain
deviation values in the initial steps of the adaptive mesh
generation including the alteration of the r-method and the
h-method are shown on Table 1. After about nine iterations of
refinement, the adaptive mesh scheme satisfies the iteration
tolerance limit.

A series of meshes automatically generated are shown in Fig
2. Fig. 2(a) shows the expert system generated initial mesh. Fig.
2(b) shows the generated final mesh at t = 0.24 which is the time
of maximum deflection during forced vibration (t = 0~1s). Fig.
2(c) shows the generated mesh at t = 4.70 which is the time of
maximum deflection during free vibration (t=1~5s). In Fig. 2(c),
the overlapped deflected shape is also shown. The generated
meshes show the agreement with the basic finite element mesh
concept where fine meshes should be around the loading(see
Fig. 2(b)) and the anticipated highly stressed areas(fixed end
part, especially top and bottom). The meshes also show that
there are no overly distorted elements. In practice, a uniform,

and in many cases overly fine mesh is used throughout the
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Fig. 2 Automatically generated finite element meshes for
cantilever example

Fig. 3 Uniform mesh commonly used (cantilever example)

analysis such as the one shown in Fig. 3. A mesh of identical
square shapes totaling 1600 elements for the cantilever are used
to simulate this and the result from this is ‘Engineering
Solution’. To estimate more accurate result without an adaptive
scheme, a finer uniform mesh with 6400 identical squares obtained
by dividing each element used in Engineering Solution into four
identical square elements is formed. The solution using this is
‘Very Fine Mesh Solution’. The solution from the automated
adaptive meshes is ‘Strategy Solution’. In the automatically
generated meshes, the number of elements are between 560 and
826. The specifications for the personal computer used for the
analyses are the following: 64bit Intel Corel7-6700CPU; 32.0
GB RAM; Windows 10Pro 64bit. Comparisons of middle point
vertical displacements of the free end and middle point normal
stresses of the fixed end are shown in Fig. 4. Close agreements
among the three solutions are depicted in the the figure;
however, if the output data from Very Fine Solution are assumed
to have no error, errors from Engineering Solution are much
bigger than the errors from Strategy Solution. Comparative
errors and computation times are shown in Table 2. The total

errors shown in Table 2 are computed by defining them as the
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(b) Mid-horizontal normal stress at the fixed end (top)

15 4 —— Enginecring Solution
—br— Very Fine

Mesh Solution
—O— Strategy Solution

Stress (N/m?)

Time (sec)

(c) Mid-vertical normal stress at the fixed end (middle)

Fig. 4 Comparisons of displacement and stress solutions

square root of the sum of errors at selected points which are
middle point of free end for displacement and middle, top and
bottom points at the fixed end for stresses. The values on the
table show that with the automation, displacement and stress

errors have been significantly reduced (3.592% to 0.321% for
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Table 2. Run times and error

Solution Total Displacement Error % Total Stress Error % Run Time
vs Very Fine Mesh Solution vs Very Fine Mesh Solution (% vs Engineering Solution)
Very Fine Mesh Solution 0.0% 0.0% Smin. 56sec.
(6400elements) (assumed no error) (assumed no error) (266.66% increase)
Engineering Solution o 0 Imin. 48sec.
(1600elements) 3:592% 2.822% (0.0%)
Strategy Solution o 0 42sec.
(560-826¢elements) 0.321% 0221% (62.96% decrease)
Y P + T || T
S T sia
B H HHHHH ==
300 cm 1 3
C 100 cm
A
— <— 100 cm 600 cm {
W T
¥ 5% (@) Maximum number of elements
W e o
[t=0.275s, 840 elements, forced vibration]
600 cm l|I T I'l
. > By .
Llll‘— L 1 +
Fig. 5 Dimensions of portal example inw —H
|l
total displacement and 2.822% to 0.222% for stress) with a
decrease of 62.96% in real run time; uniform mesh used for the H
entire structure to obtain Very Fine Solution needed much larger T
increase in real run time of 266.66%. Even as the computing l:_"“ ol ﬂ_“‘“
LT AT~
power of computers is increasing continuously, automation still
! N I e Ly
needs efficiency of computation in every step of the procedure in
order for the method to be practical and to produce realistic real u s
time responses, and this case study shows the effectiveness of H H

Strategy Solution.

3.2 Adaptive meshes generated for a portal example

Fig. 5 shows dimensions of a portal frame with a loading P(t)
at the top mid point (point B in the figure). The loading P(t) is
the same as the one considered in the cantilever example in
Section 3.2, i.e., one sinusoid given in Eq. (14) for one second

and free vibration for four seconds following. Fig. 6 shows
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(b) Minimum number of elements
[t=0.760s, 760 elements, free vibration]

Fig. 6 Generated adaptive meshes for portal example

adaptively generated meshes. The mesh generated at t = 0.275
seconds when the vertical deflection of point A is at the
maximum is shown in Fig. 6(a). This is during forced vibration
and the number of elements is the maximum at 840. Fig. 6(b)

shows the mesh where the number of elements is the minimum



at 760. This is at t = 3.760 during free vibration.

Stress results from a properly coded finite element program
must pass patch test which in simple terms mean ‘constant stress
must be exactly reproduced.” Theoretically, the variations in
stress values within an element are the sources of error in the
finite element results. Thus a good mesh avoids distorted
element shapes and the fineness of mesh is directly proportional
to the gradient of stress so that the stress in a given element is
close to a constant value. In regions where the stress is expected
to be constant or stress free, element sizes may be large and in
regions around stress concentration (high stress gradient), the
elements must be very fine. In Fig. 6, outer corners of the portal
are stress free regions and the generated meshes here have large
elements. Inner corners and and under the load areas(see Fig.
6(a)) are stress concentration regions and the meshes are very
fine here. The value of stress(largeness) and displacement by

themselves are irrelevant in forming a good finite element mesh.

4. Conclusions

Structural analysis automation is an important ingredient of a
hazard mitigation system related to architectural and civil
structures. For automation, the needed finite element mesh
generation scheme for finite element analysis of a structures is
presented. The specified procedure for the r-h method based
adaptive mesh generation is efficient in terms of real time
without any significant decrease in accuracy of the solutions.
The algorithm utilizes the commonly known finite element
related concepts such as the h-method and the r-method of mesh
refinement, shape factors for distortion of element shapes, and
strain deviations for estimation of error; the computational time
required for incorporating these concepts are small. The case
study of a cantilever dynamics example shows specifics of the
procedure. The generated adaptive meshes for the portal frame
example show the appropriateness of the procedure where the
generated fine meshes are shown to be around high stress
gradient areas, and coarse meshes are in the constant or zero
stress regions. The automation schemes may be used in the
structural analysis module in any integrated system or in any part
of nonlinear structural analysis and general dynamic analysis of
a structure based on the finite element method. The procedure is
general enough to be used for real time numerical computation

of responses of large complicated structures subjected to real

o 3%
5

time dependent loads such as earthquakes and extreme weather
conditions as efficient and accurate automated analyses of these
dynamic and nonlinear problems are becoming an essential part
of today’s integrated hazard mitigation systems. The further
development of an expert system that produces more powerful
initial mesh and use of that expert system to generate more
effective initial mesh should improve the performance of

automation.
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