Research Paper
Cha, S.H., Kim, H.S., Cho, S. (2022) Parametric Studies on Hydrogen Embrittlement in Liquified Hydrogen Tank using Molecular Dynamics Simulation, J. Comput. Struct. Eng. Inst. Korea, 35(6), pp.325~331.
10.7734/COSEIK.2022.35.6.325Di Leo, C.V., Anand, L. (2013) Hydrogen in Metals: a Coupled Theory for Species Diffusion and Large Lastic-Plastic Deformations, Int. J. Plast., 43, pp.42~69.
10.1016/j.ijplas.2012.11.005Dugdale, D.S. (1960) Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 8(2), pp.100~104.
10.1016/0022-5096(60)90013-2Dwivedi, S.K., Vishwakarma, M. (2018) Hydrogen Embrittlement in Different Materials: A Review, Int. J. Hydrog. Energy., 43(46), pp.21603~21616.
10.1016/j.ijhydene.2018.09.201Gobbi, G., Colombo, C., Miccoli, S., Vergani, L. (2019) A fully coupled implementation of hydrogen embrittlement in FE analysis, Adv. Eng. Softw., 135, p.102673.
10.1016/j.advengsoft.2019.04.004Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth, J. Eng. Mater. Technol., 99, pp.2~15.
10.1115/1.3443401Huang, S., Hui, H., Peng, J. (2023) Prediction of Hydrogen-Assisted Fracture under Coexistence of Hydrogen-Enhanced Plasticity and Decohesion, Int. J. Hydrog. Energy, 48(94), pp.36987~37000.
10.1016/j.ijhydene.2023.06.033Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., Song, X. (2020) Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention, Acta Metall. Sin. (Engl. Lett.), 33, pp.759~773.
10.1007/s40195-020-01039-7Lin, M., Yu, H., Wang, X., Wang, R., Ding, Y., Alvaro, A., Olden, V., Zhang, Z. (2022) A Microstructure Informed and Mixed-Mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement, Int. J. Hydrog. Energy, 47(39), pp.17479~17493.
10.1016/j.ijhydene.2022.03.226Oriani, R.A., Josephic, P.H. (1974) Equilibrium Aspects of Hydrogen-induced Cracking of Steels, Acta Metall., 22(9), pp.1065~1074.
10.1016/0001-6160(74)90061-3Park, J., Huh, N.S., Park, K. (2024a) Numerical Modeling of Hydrogen Embrittlement Fracture with Hydrogen Diffusion Model and Gurson-Cohesive Model. (in preparation)
Park, J., Kweon, S., Park, K. (2024b) Computational Implementation of Gurson-Cohesive Modeling and Its Applications. (in preparation)
Park, J., Kweon, S., Park, K. (2024c) Gurson-Cohesive Modeling (GCM) for 3D Ductile Fracture Simulation, Int. J. Plast., p.103914.
10.1016/j.ijplas.2024.103914Park, K., Paulino, G.H. (2012) Computational Implementation of the PPR Potential-based Cohesive Model in ABAQUS: Educational Perspective, Eng. Fract. Mech., 93, pp.239~262.
10.1016/j.engfracmech.2012.02.007Park, K., Paulino, G.H., Roesler, J.R. (2009) A Unified Potential-based Cohesive Model of Mixed-Mode Fracture, J. Mech. Phys. Solids, 57, pp.891~908.
10.1016/j.jmps.2008.10.003Serebrinsky, S., Carter, E.A., Ortiz, M. (2004) A Quantum-Mechanically Informed Continuum Model of Hydrogen Embrittlement, J. Mech. Phys. Solids, 52(10), pp.2403~2430.
10.1016/j.jmps.2004.02.010Sofronis, P., Liang, Y., Aravas, N. (2001) Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys, Eur. J. Mech. A Solids, 20(6), pp857~872.
10.1016/S0997-7538(01)01179-2- Publisher :Computational Structural Engineering Institute of Korea
- Publisher(Ko) :한국전산구조공학회
- Journal Title :Journal of the Computational Structural Engineering Institute of Korea
- Journal Title(Ko) :한국전산구조공학회 논문집
- Volume : 37
- No :4
- Pages :267-274
- Received Date : 2024-06-14
- Revised Date : 2024-07-12
- Accepted Date : 2024-07-15
- DOI :https://doi.org/10.7734/COSEIK.2024.37.4.267