All Issue

2019 Vol.32, Issue 6 Preview Page

Research Paper

31 December 2019. pp. 409-416
Abstract
References
1
Bischoff, P.H., Perry, S.H. (1991) Compressive Behaviour of Concrete at High Strain Rates, Mater Struct., 24(6), pp.425~450. 10.1007/BF02472016
10.1007/BF02472016
2
Biggs, J.M. (1964) Introduction to Structural Dynamics, New York, McGraw-Hill
3
Chen, X., Wu, S., Zhou, J. (2013) Experimental and Modeling Study of Dynamic Mechanical Properties of Cement Paste, Mortar and Concrete, Const. &Build. Mater., 47, pp.419~430. 10.1016/j.conbuildmat.2013.05.063
10.1016/j.conbuildmat.2013.05.063
4
Chopra, A.K. (1995) Dynamics of Structures. 3rd ed. New Jersey, Prentice Hall.
5
Comite Euro-International (1993) Ceb-Fip Model Code 1990: Design Code Du Beton. Wiltshire, UK.
6
Darwin, D., Pecknold D.A.W., (1974) Inelastic Model for Cyclic Biaxial Loading of Reinforced Concrete. University of Illinois at Urbana-Champaign.
7
Gang, H.G., Kwak, H-.G. (2017) A Strain Rate Dependent Orthotropic Concrete Material Model, Int. J. Impact Eng., 103, pp.211~224. 10.1016/j.ijimpeng.2017.01.027
10.1016/j.ijimpeng.2017.01.027
8
Ha, J.H., Yi, N.H., Choi, J.K., Kim, J.H. (2011) Experimental Study on Hybrid CFRP-PU Strengthening Effect on RC Panels under Blast Loading, Compos. Struct, 93(8), pp.2070~2082. 10.1016/j.compstruct.2011.02.014
10.1016/j.compstruct.2011.02.014
9
Hao, H. (2015) Predictions of Structural Response to Dynamic Loads of Different Loading Rates, Int. J. Prot. Struct., 6(4), pp.585~605. 10.1260/2041-4196.6.4.585
10.1260/2041-4196.6.4.585
10
He, W., Wu, Y.F., Liew, K.M., Wu, Z. (2006) A 2D Total Strain Based Constitutive Model for Predicting the Behaviors of Concrete Structures, Int. J. Eng. Sci., 44(18-19), pp.1280~1303. 10.1016/j.ijengsci.2006.07.007
10.1016/j.ijengsci.2006.07.007
11
Holmquist, T.J., Johnson, G.R., Cook, W.H. (1993) A Computational Constitutive Model for Concrete Subjected to Large Strains, High Strain Rates and High Pressures, 14th International Symposium, 2, pp.591~600
12
Hussein, A., Marzouk, H. (2000) Behavior of High- Strength Concrete under Biaxial Stresses, ACI Struct. J., 97(1), pp.27~36. 10.14359/802
10.14359/802
13
Jacques, E. (2011) Blast Retrofit of Reinforced Concrete Walls and Slabs, Univ of Ottawa.
14
Kupfer, H.B., Gerstle, K.H. (1973) Behavior of Concrete under Biaxial Stresses, J. Eng. Mech. Div., 99(4), pp.853~866. 10.2172/4949861
10.2172/4949861
15
Kwak, H-.G., Gang, H.G. (2017) A Tensile Criterion to Minimize FE Mesh-Dependency in Concrete Beam under Blast Loading, J. Comput. Struct. Eng. Inst. Korea, 30(2), pp.137~143. 10.7734/COSEIK.2017.30.2.137
10.7734/COSEIK.2017.30.2.137
16
Lee, M.J., Kwak, H-.G. (2018) Blast and Impact Analyses of RC Beams Considering Bond-Slip Effect and Loading History of Constituent Materials, Int. J. Concr. Struct. Mater., 12(1). 10.1186/s40069-018-0244-9
10.1186/s40069-018-0244-9
17
Li, Q.M., Meng, H. (2003) About the Dynamic Strength Enhancement of Concrete-like Materials in a Split Hopkinson Pressure Bar Test, Int. J. Solids Struct, 40(2), pp.343~360. 10.1016/S0020-7683(02)00526-7
10.1016/S0020-7683(02)00526-7
18
LSTC. (2007) LS-DYNA Keyword User's Manual Version 97.
19
Malvar, L.J. (1998) Review of Static and Dynamic Properties of Steel Reinforcing Bars, ACI Mater. J.
20
Malvar, L.J., Crawford, J.E. (1998) Dynamic Increase Factors for Concrete, 28th DDESB Seminar Orlando.
21
Paulay, T., Priestley, M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings, New York. 10.1002/9780470172841
10.1002/9780470172841
22
Scott, B.D., Park, R., Priestley, M.J.N. (1982) Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, J. Proc., 79(1), pp.13~27. 10.14359/10875
10.14359/10875
23
Thiagarajan, G., Johnson, C.F. (2014) Experimental Behavior of Reinforced Concrete Slabs Subjected to Shock Loading, ACI Struct. J., 111(6), pp.1407~1417. 10.14359/51686970
10.14359/51686970
24
Thiagarajan, G., Kadambi, A.V., Robert, S., Johnson, C.F. (2015) Experimental and Finite Element Analysis of Doubly Reinforced Concrete Slabs Subjected to Blast Loads, Int. J. Impact Eng., 75, pp.162~173. 10.1016/j.ijimpeng.2014.07.018
10.1016/j.ijimpeng.2014.07.018
25
Vecchio, F.J., Collins, M.P. (1986) The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI J., 83(2), pp.219~231. 10.14359/10416
10.14359/10416
26
Wang, W., Zhang, D., Lu, F., Wang, S.C., Tang, F. (2012) Experimental Study on Scaling the Explosion Resistance of a One-Way Square Reinforced Concrete Slab under a Close-in Blast Loading, Int. J. Impact Eng., 49, pp.158~164. 10.1016/j.ijimpeng.2012.03.010
10.1016/j.ijimpeng.2012.03.010
27
Yan, D., Lin, G. (2007) Dynamic Behaviour of Concrete in Biaxial Compression, Mag. Concr. Res., 59(1), pp.45~52. 10.1680/macr.2007.59.1.45
10.1680/macr.2007.59.1.45
28
Zhao, C.F., Chen, J.Y. (2013) Damage Mechanism and Mode of Square Reinforced Concrete Slab Subjected to Blast Loading, Theor. Appl. Fra.c Mech., 63-64, pp.54~62. 10.1016/j.tafmec.2013.03.006
10.1016/j.tafmec.2013.03.006
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 32
  • No :6
  • Pages :409-416
  • Received Date : 2019-10-29
  • Revised Date : 2019-11-26
  • Accepted Date : 2019-11-30