All Issue

2024 Vol.37, Issue 5 Preview Page

Research Paper

31 October 2024. pp. 337-344
Abstract
References
1

Balla, K., Sevilla, R., Hassan, O., Morgan, K. (2021) An Application of Neural Networks to the Prediction of Aerodynamic Coefficients of Aerofoils and Wings, Appl. Math. Model., 96, pp.456~479.

10.1016/j.apm.2021.03.019
2

Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy K., Kaushik, S. (2019) Prediction of Aerodynamic Flow Fields using Convolutional Neural Networks, Comput. Mech., 64, pp.525~545.

10.1007/s00466-019-01740-0
3

Chadebec, C., Allassonnière, S. (2021) Data Augmentation with Variational Autoencoders and Manifold Sampling, In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Proceedings 1, pp.184~192.

10.1007/978-3-030-88210-5_17
4

Chadebec, C., Allassonnière, S. (2022) A Geometric Perspective on Variational Autoencoders, Adv. Neural Inf. Proc. Syst., 35, pp.19618~19630.

5

Geelen, R., Wright, S., Willcox, K. (2023) Operator Inference for Non-Intrusive Model Reduction with Quadratic Manifolds, Comput. Methods App. Mech. & Eng., 403, p.115717.

10.1016/j.cma.2022.115717
6

Jia, X., Li, C., Ji, W., Gong, C. (2022) A Hybrid Reduced-Order Model Combing Deep Learning for Unsteady Flow, Phys. Fluids, 34(9), p.097112.

10.1063/5.0104848
7

Lee, S., Jang, K., Cho, H., Kim, H., Shin, S. (2021) Parametric Non-Intrusive Model order Reduction for Flow-Fields using Unsupervised Machine Learning, Comput. Methods Appl. Mech. & Eng., 384, p.113999.

10.1016/j.cma.2021.113999
8

Mumuni, A., Mumuni, F. (2022) Data Augmentation: A Comprehensive Survey of Modern Approaches, Array, 16, p.100258.

10.1016/j.array.2022.100258
9

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. (2016) Improved Techniques for Training GANs, Adv. Neural Inf. Proc. Syst., 29.

10

Spalart, P.R., Venkatakrishnan, V. (2016) On the Role and Challenges of CFD in the Aerospace Industry, The Aeronaut. J., 120(1223), pp.209~232.

10.1017/aer.2015.10
11

Xia, B., Sun, D.-W. (2002) Applications of Computational Fluid Dynamics (CFD) in the Food Industry: A Review, Comput. & Electron. Agric., 34(1-3), pp.5~24.

10.1016/S0168-1699(01)00177-6
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 37
  • No :5
  • Pages :337-344
  • Received Date : 2024-07-10
  • Revised Date : 2024-08-26
  • Accepted Date : 2024-08-27
Journal Informaiton Journal of the Computational Structural Engineering Institute of Korea Journal of the Computational Structural Engineering Institute of Korea
  • NRF
  • KOFST
  • crossref crossmark
  • crossref cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close