All Issue

2023 Vol.36, Issue 5 Preview Page

Research Paper

31 October 2023. pp. 295-305
Abstract
References
1
Ambati, M., Gerasimov, T., De Lorenzis, L. (2014) A Review on Phase-Field Models of Brittle Fracture and a New Fast Hybrid Formulation, Comput. Mech., 55, pp.383~405. 10.1007/s00466-014-1109-y
2
Amor, H., Marigo, J.-J., Maurini, C. (2009) Regularized Formulation of the Variational Brittle Fracture with Unilateral Contact: Numerical Experiments, J. Mech. & Phys. Solids, 57, pp. 1209~1229. 10.1016/j.jmps.2009.04.011
3
Augarde, C.E., Deeks, A.J. (2008) The Use of Timoshenko's Exact Solution for a Cantilever Beam in Adaptive Analysis, Finite Elem. Anal. & Des., 44, pp.595~601. 10.1016/j.finel.2008.01.010
4
Bordas, S.P.A., Rabczuk, T., Nguyen-Xuan, H., Nguyen, V.P., Natarajan, S., Bog, T., Quan, D.M., Hiep, N.V. (2010) Strain Smoothing in FEM and XFEM, Comput. & Struct., 88, pp.1419~1443. 10.1016/j.compstruc.2008.07.006
5
Bourdin, B., Francfort, G.A., Marigo, J.-J. (2000) Numerical Experiments in Revisited Brittle Fracture, J. Mech. & Phys. Solids, 48, pp.797~826. 10.1016/S0022-5096(99)00028-9
6
Dai, K.Y., Liu, G.R., Nguyen, T.T. (2007) An -sided Polygonal Smoothed Finite Element Method (SFEM) for Solid Mechanics, Finite Elem. Anal. & Des., 43, pp.847~860. 10.1016/j.finel.2007.05.009
7
Finkel, R.A., Bentley, J.L. (1974) Quad Trees a Data Structure for Retrieval on Composite Keys, Acta Inform., 4, pp.1~9. 10.1007/BF00288933
8
Francfort, G.A., Marigo, J.-J. (1998) Revisiting Brittle Fracture as an Energy Minimization Problem, J. Mech. & Phys. Solids, 46, pp.1319~1342. 10.1016/S0022-5096(98)00034-9
9
Fries, T.-P., Belytschko, T. (2010) The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications, Int. J. Numer. Methods Eng., 84, pp.253~304. 10.1002/nme.2914
10
Griffith, A.A. (1921) The Phenomenon of Rupture and Flow in Solids, Philos. Trans. Royal Soc. Lond., Series A, Containing Papers of a Mathematical or Physical Character, 221, pp. 163~198. 10.1098/rsta.1921.0006
11
Hirshikesh, Natarajan, S., Annabattula, R.K. (2018) A FEniCS Implementation of the Phase Field Method for Quasi-static Brittle Fracture, Front. Struct. & Civil Eng., 13, pp.380~396. 10.1007/s11709-018-0471-9
12
Lee, C.K., Singh, I.V., Natarajan, S. (2022) A Cell-based Smoothed Finite Element Method for Gradient Elasticity, Eng. with Comput., 39, pp.925~942. 10.1007/s00366-022-01734-2
13
Liu, G.R., Dai, K.Y., Nguyen, T.T. (2007a) A Smoothed Finite Element Method for Mechanics Problems, Comput. Mech., 39, pp.859~877. 10.1007/s00466-006-0075-4
14
Liu, G.R., Nguyen, T.T. (2016) Smoothed Finite Element Methods, CRC Press, Boca Raton. 10.1201/EBK1439820278
15
Liu, G.R., Nguyen, T.T., Dai, K.Y., Lam, K.Y. (2007b) Theoretical Aspects of the Smoothed Finite Element Method (SFEM), Int. J. Numer. Methods Eng., 71, pp.902~930. 10.1002/nme.1968
16
Meyer, M., Lee, H., Barr, A., Desbrun, M. (2002) Generalized Barycentric Coordinates for Irregular Polygons, J. Graph. Tools, 7, pp.13~22. 10.1080/10867651.2002.10487551
17
Miehe, C., Hofacker, M., Welschinger, F. (2010a) A Phase Field Model for Rate-independent Crack Propagation: Robust Algorithmic Implementation based on Operator Splits, Comput. Methods Appl. Mech. & Eng., 199, pp.2756~2778. 10.1016/j.cma.2010.04.011
18
Miehe, C., Welschinger, F., Hofacker, M. (2010b) Thermodynamically Consistent Phase-field Models of Fracture: Variational Principles and Multi-field FE Implementation, Int. J. Numer. Methods Eng., 83, pp.1273~1311. 10.1002/nme.2861
19
Moës, N., Belytschko, T. (2002) Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 69, pp.813~ 833. 10.1016/S0013-7944(01)00128-X
20
Molnár, G., Gravouil, A. (2017) 2D and 3D Abaqus Implementation of a Robust Staggered Phase-field Solution for Modeling Brittle Fracture, Finite Elem. Anal. & Des., 130, pp.27~38. 10.1016/j.finel.2017.03.002
21
Natarajan, S., Ooi, E.T., Song, C. (2013) Finite Element Computations on Quadtree Meshes: Strain Smoothing and Semi-analytical Formulation, Math.: Numer. Anal., arXiv, 1310.2913.
22
Surendran, M., Natarajan, S., Bordas, S.P.A., Palani, G.S. (2017) Linear Smoothed Extended Finite Element Method, Int. J. Numer. Methods Eng., 112, pp.1733~1749. 10.1002/nme.5579
23
Wachspress, E.L. (1971) A Rational Basis for Function Approximation, IMA J. Appl. Math., 8, pp.57~68. 10.1093/imamat/8.1.57
24
Warren, J., Schaefer, S., Hirani, A., Desbrun, A. (2007) Barycentric Coordinates for Convex Sets, Adv. Comput. Mech., 3, pp. 319~338. 10.1007/s10444-005-9008-6
25
Yoo, H.-S., Kim, H.-S. (2016) Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29, pp.201~208. 10.7734/COSEIK.2016.29.2.201
26
Zeng, W., Liu, G.R. (2018) Smoothed Finite Element Methods (S-FEM): An Overview and Recent Development, Arch. Comput. Methods Eng., 25, pp.397~435. 10.1007/s11831-016-9202-3
27
Zhuang, X., Zhou, S., Huynh, G.D., Areias, P., Rabczuk, T. (2022) Phase Field Modeling and Computer Implementation: A Review, Eng. Fract. Mech., 262, p.108234. 10.1016/j.engfracmech.2022.108234
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 36
  • No :5
  • Pages :295-305
  • Received Date : 2023-06-23
  • Revised Date : 2023-07-27
  • Accepted Date : 2023-08-02
Journal Informaiton Journal of the Computational Structural Engineering Institute of Korea Journal of the Computational Structural Engineering Institute of Korea
  • NRF
  • KOFST
  • crossref crossmark
  • crossref cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close