All Issue

2024 Vol.37, Issue 3 Preview Page

Research Paper

30 June 2024. pp. 187-195
Abstract
References
1

Aifantis, E.C. (1992) On the Role of Gradients in the Localization of Deformation and Fracture, Int. J. Eng. Sci., 30, pp.1279~1299.

10.1016/0020-7225(92)90141-3
2

Aifantis, E.C. (2003) Update on a Class of Gradient Theories, Mech. Mater., 35, pp.259~280.

10.1016/S0167-6636(02)00278-8
3

Altan, B.S., Aifantis, E.C. (1997) On Some Aspects in the Special Theory of Gradient Elasticity, J. Mech. Behav. Mater., 8, pp.231~282.

10.1515/JMBM.1997.8.3.231
4

Askes, H., Aifantis, E.C. (2002) Numerical Modeling of Size Effects with Gradient Elasticity - Formulation, Meshless Discretization with Examples, Int. J. Fract., 117, pp.347~358.

10.1023/A:1022225526483
5

Askes, H., Morata, I., Aifantis, E.C. (2008) Finite Element Analysis with Staggered Gradient Elasticity, Comput. & Struct., 86, pp.1266~1279.

10.1016/j.compstruc.2007.11.002
6

Auffray, N., dell'Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G. (2015) Analytical Continuum Mechanics à la Hamilton-Piola: Least Action Principle for Second Gradient Continua and Capillary Fluids, Math. & Mech. Solids, 20, pp.375~417.

10.1177/1081286513497616
7

Augarde, C.E., Deeks, A.J. (2008) The Use of Timoshenko's Exact Solution for a Cantilever Beam in Adaptive Analysis, Finite Elem. Anal. & Des., 44, pp.595~601.

10.1016/j.finel.2008.01.010
8

Bagni, C., Askes, H. (2015) Unified Finite Element Methodology for Gradient Elasticity, Comput. & Struct., 160, pp.100~110.

10.1016/j.compstruc.2015.08.008
9

Bordas, S.P.A., Natarajan, S. (2010) On the Approximation in the Smoothed Finite Element Method (SFEM), Int. J. Numer. Methods Eng., 81, pp.660~670.

10.1002/nme.2713
10

Eringen, A.C. (1983) On Differential Equations of Nonlocal Easticity and Solutions of Screw Dislocation and Surface Waves, J. Appl. Phys., 54, pp.4703~4710.

10.1063/1.332803
11

Francis, A., Natarajan, S., Lee, C.K., Budarapu, P.R. (2022) A Cell-based Smoothed Finite Element Method for Finite Elasticity, Int. J. Comput. Methods Eng. Sci. & Mech., 23, pp.536~550.

10.1080/15502287.2022.2030427
12

Jiang, C., Liu, G.R., Han, X, Zhang, Z.-Q., Zeng, W. (2015) A Smoothed Finite Element Method for Analysis of Anisotropic Large Deformation of Passive Rabbit Ventricles in Diastole, International Journal for Numerical Methods in Biomedical Engineering, 31, pp.e02697.

10.1002/cnm.269725382158
13

Kolo, I. (2019) Computational Gradient Elasticity and Gradient Plasticity with Adaptive Splines, PhD Thesis, University of Sheffield.

14

Kshirsagar, S., Lee, C.K., Natarajan, S. (2021) -Finite Element Method for Frictionless and Frictional Contact Including Large Deformation, Int. J. Comput. Methods, 18, pp.215002.

10.1142/S021987622150002X
15

Lee, C.K., Angela Mihai, L., Hale, J.S., Kerfriden, P., Bordas, S.P.A. (2017) Strain Smoothing for Compressible and Nearly-Incompressible Finite Elasticity, Comput. & Struct., 182, pp.540~555.

10.1016/j.compstruc.2016.05.004
16

Lee, C.K., Natarajan, S., Yee, J.-J. (2023a) Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 36, pp.295~305.

10.7734/COSEIK.2023.36.5.295
17

Lee, C.K., Singh, I.V., Natarajan, S. (2023b) A Cell-based Smoothed Finite-Element Method for Gradient Elasticity, Eng. Comput., 39, pp.925~942.

10.1007/s00366-022-01734-2
18

Liu, G.R., Dai, K.Y., Nguyen, T.T. (2007a) A Smoothed Finite Element Method for Mechanics Problems, Comput. Mech., 39, pp.859~877.

10.1007/s00466-006-0075-4
19

Liu, G.R., Nguyen, T.T. (2016) Smoothed Finite Element Methods, CRC Press, Boca Raton.

10.1201/EBK1439820278
20

Liu, G.R., Nguyen, T.T., Dai, K.Y., Lam, K.Y. (2007b) Theoretical Aspects of the Smoothed Finite Element Method (SFEM), Int. J. Numer. Methods Eng., 71, pp.902~930.

10.1002/nme.1968
21

Mindlin, R.D. (1964) Micro-Structure in Linear Elasticity, Archive for Rational Mechanics and Analysis, 16, pp.51~78.

10.1007/BF00248490
22

Pilkey, W.D., Pilkey, D.F. (2008) Peterson's Stress Concentration Factors, Wiley, New York.

10.1002/9780470211106
23

Pisano, A.A., Sofi, A., Fuschi, P. (2009) Nonlocal Integral Elasticity: 2D Finite Element Based Solution, Int. J. Solids & Struct., 46, pp.3836~3849.

10.1016/j.ijsolstr.2009.07.009
24

Ru, C.Q., Aifantis, E.C. (1993) A Simple Approach to Solve Boundary-Value Problem in Gradient Elasticity, Acta Mech., 101, pp.59~68.

10.1007/BF01175597
25

Surendran, M., Lee, C.K., Nguyen-Xuan, H., Liu, G.R., Natarajan, S. (2021) Cell-based Smoothed Finite Element Method for Modelling Interfacial Cracks with Non-Matching Grids, Eng. Fract. Mech., 242, p.107476.

10.1016/j.engfracmech.2020.107476
26

Tenek, L.T., Aifantis, E.C. (2001) On Some Applications of Gradient Elasticity to Composite Materials, Compos. Struct., 53, pp.189~197.

10.1016/S0263-8223(01)00003-4
27

Tenek, L.T., Aifantis, E.C. (2002) A Two-dimensional Finite Element Implementation of a Special Form of Gradient Elasticity, Comput. Model. Eng. & Sci., 3, pp.731~741.

28

Toupin, R.A. (1962) Elastic Materials with Couple-Stresses, Arch. Ration. Mech. & Anal., 11, pp.385~414.

10.1007/BF00253945
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 37
  • No :3
  • Pages :187-195
  • Received Date : 2024-05-08
  • Revised Date : 2024-05-31
  • Accepted Date : 2024-06-05