All Issue

2025 Vol.38, Issue 2 Preview Page

Research Paper

30 April 2025. pp. 085-090
Abstract
References
1

Baek, S., Oh, J., Woo, H., Kim, I., Jang, S. (2023) Localization of Cracks in Concrete Structures Lacking Reference Objects and Feature Points Using an Unmanned Aerial Vehicle, Appl. Sci., 13(17), p.9918.

10.3390/app13179918
2

Bang, H., Min, J., Jeon, H. (2021) Deep Learning-based Concrete Surface Damage Monitoring Method using Structured Lights and Depth Camera, Sens., 21(8), p.2759.

10.3390/s2108275933919733PMC8070667
3

Hsieh, Y.A., Tsai, Y.J. (2020) Machine Learning for Crack Detection: Review and Model Performance Comparison, J. Compu. Civil Eng., 34(5), p.04020038.

10.1061/(ASCE)CP.1943-5487.0000918
4

Ji, B. (2021) Crack Detection on Bridge Deck Using Generative Adversarial Networks and Deep Learning, J. Korean Soc. Constr. Recycl. Resour., 9(3), pp.303~310.

5

Kim, B., Kim, G., Jin,S., Cho, S. (2019) A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types, J. Korean Soc. Saf., 34(6), pp.50~57.

6

Kim, E., Cho, S., Sim, S. (2015) A Recent Research Summary on Smart Sensors for Structural Health Monitoring, J. Korea Inst. Struct. Maint. & Insp., 19(3), pp.010~021.

10.11112/jksmi.2015.19.3.010
7

Kim, J., Jung, Y., Rhim, H. (2017) Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques, J. Korea Inst. Build. Constr., 17(6), pp.545~557.

8

Li, Y., Ma, R., Liu, H., Cheng, G. (2023) Real-time High-Resolution Neural Network with Semantic Guidance for Crack Segmentation, Autom. Constr., 156, p.105112.

10.1016/j.autcon.2023.105112
9

McNeal, G.S. (2016) Drones and the Future of Aerial Surveillance, George Washington Law Rev., 84, p.64.

10

Meng, S., Gao, Z., Zhou, Y., He, B., Djerrad, A. (2023) Real‐Time Automatic Crack Detection Method based on Drone, Comput.‐Aided Civil& Infrastr. Eng., 38(7), pp.849~872.

10.1111/mice.12918
11

Nguyen, H., Kam, T., Cheng, P. (2014) An Automatic Approach for Accurate Edge Detection of Concrete Crack Utilizing 2D Geometric Features of Crack, J. Signal Process. Syst., 77(3), pp. 221~240.

10.1007/s11265-013-0813-8
12

Sohn, H., Lim, Y., Yun, K., Kim, G. (2004) Monitoring Crack Changes in Concrete Structures, Comput.-Aided Civil & Infrastr. Eng., 20, pp.52~61.

10.1111/j.1467-8667.2005.00376.x
13

Yu, S., Jang, J., Han, C. (2007) Auto Inspection System using a Mobile Robot 364 for Detecting Concrete Cracks in a Tunnel, Autom. Constr., 16(3), pp.255~261.

10.1016/j.autcon.2006.05.003
14

Yuan, C., Xiong, B., Li, X., Sang, X., Kong, Q. (2022) A Novel Intelligent 366 Inspection Robot with Deep Stereo Vision for Three-Dimensional Concrete Damage Detection and 367 Quantification, Struct. Health Monit., 21(3), pp.788~802.

10.1177/14759217211010238
Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 38
  • No :2
  • Pages :085-090
  • Received Date : 2024-10-30
  • Revised Date : 2024-12-03
  • Accepted Date : 2024-12-03
Journal Informaiton Journal of the Computational Structural Engineering Institute of Korea Journal of the Computational Structural Engineering Institute of Korea
  • NRF
  • KOFST
  • crossref crossmark
  • crossref cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close