All Issue

2025 Vol.38, Issue 2

Research Paper

30 April 2025. pp. 075-084
Abstract
References
1

Activeloop (2024) CIFAR-100 Dataset, Retrieved from: https://datasets.activeloop.ai/docs/ml/datasets/cifar-100-dataset/

2

Cho, H., Yoon, H.J., Jung, J.Y. (2018) Image-based Crack Detection using Crack Width Transform (CWT) Algorithm, IEEE Access, 6, pp.60100~60114.

10.1109/ACCESS.2018.2875889
3

Choi, I., Shin, K., An, H., Koo, J., Son, J., Lim, D., Oh, T., Yoon, Y. (2020) Development of Image Process for Crack Identification on Porcelain Insulators, J. Korean Inst. Electron. Mast. Eng., 33(4), pp.303~309.

4

Choi, Y., Kim, S. (2022) Optimization of Image Augmentation Scale Considering Reliability and Computational Efficiency when Classifying Concrete Structure Cracks in CNN, Proc. Korean Inst. Inf. & Commun. Sci. Conf., pp.324~327.

5

Fairchild, M.D. (2013) Color Appearance Models (3rd ed.), Wiley.

10.1002/9781118653128
6

Golewski, G.L. (2023) The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types & Places of Occur., & Methods of Detect.-A Rev., Build., 13(3), p.765.

10.3390/buildings13030765
7

Gowda, S., Yuan, C. (2019) ColorNet: Investigating the Importance of Color Spaces for Image Classification, arXiv:1902.00267v1.

10.1007/978-3-030-20870-7_36
8

Hamishebahar, Y., Guan, H., So, S., Jo, J. (2022) A Comprehensive Review of Deep Learning-based Crack Detection Approaches, Appl. Sci., 12, p.1374.

10.3390/app12031374
9

Hoang, N.D., Nguyen, Q.L. (2018) Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny and Sobel Algorithms, Adv. Civil Eng., 2018(1), p.7163580.

10.1155/2018/7163580
10

Hutchinson, T., Chen, Z. (2006) Improved Image Analysis for Evaluating Concrete Damage, J. Comput. Civil Eng., 20(3), pp.210~216.

10.1061/(ASCE)0887-3801(2006)20:3(210)
11

Ji, H., Kim, J., Hwang, S., Kim, D., Park, E., Kim, Y., Ryun, S. (2021) Deep Learning Models for Autonomous Crack Detection System, KIPS Transactions on Software and Data Engineering, 10, pp.161~168.

12

Keras Modules (2024) Module: tf.keras.application, Retrieved from: https://www.tensorflow.org/api_docs/python/tf/keras/applications

13

Kim, A., Kim, D., Byun, Y., Lee, S. (2018) Crack Detection of Concrete Structure using Deep Learning and Image Processing Method in Geotechnical Engineering, J. Korean Geotech. Soc., 34(12), pp.145~154.

14

Kim, B., Kim, G., Jin, S., Cho, S. (2019) A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types, J. Korean Soc. Safety, 34(6), pp.50~57.

15

Kim, J.-H., Shin, Y.-S., Min, K.-W. (2023). Automatic Crack Detection in Concrete Structures Using Deep Learning and Layered Image Analysis. J. Comput. Struct. Eng. Inst. Korea, 31(3), pp.123~135.

16

Lakshaymiddha (2024) Crack-Segmentation Dataset, Retrieved from: https://www.kaggle.com/datasets/lakshaymiddha/crack-segmentation-dataset

17

Lee, S.-Y., Huynh, T.-C., Park, J.-H., Kim, J.-T. (2023). Bolt-Loosening Detection using Vision-Based Deep Learning Algorithm and Image Processing Method. J. Korean Soc. Struct. Eng., 39(2), pp.124~135.

18

Ministry of Land, Infrastructure and Transport (MOLIT) (2016) Manual of Cracks in Concrete Structure for Maintenance Work such as Defect Repair, Daejun.

19

Nam, W., Jung, H., Park, K., Kim, C., Kim, G. (2022) Development of Deep Learning-based Damage Detection Prototype for Concrete Bridge Condition Evaluation, J. Civil & Environ. Eng. Res., 42(1), pp.107~116.

20

Parrany, A., Mirzaei, M. (2021) A New Image Processing Strategy for Surface Crack Identification in Building Structures under Non-uniform Illumination, IET Image Processing, 16, pp.407~415.

10.1049/ipr2.12357
21

Rouchier, S., Woloszyn, M., Foray, G., Roux, J.J. (2013) Influence of Concrete Fracture on the Rain Infiltration and Thermal Performance of Building Facades, Int. J. Heat & Mass Trans., 61, pp.340~352.

10.1016/j.ijheatmasstransfer.2013.02.013
22

Shin, J., Won, J. (2023). A Study on the Industry Practitioners' Perceptions for the Activation of AI in the Domestic Construction Sector, J. Korean Soc. Constr. Eng., 45(3), pp.215~227.

23

Smith, A.R., Lyons, G. (1978). HSL and HSV: Alternative Color Representations, ACM Transactions on Graphics (TOG).

24

Wikipedia - Color Space (2024) Color Space, Retrieved from: https://en.wikipedia.org/wiki/Color_space

Information
  • Publisher :Computational Structural Engineering Institute of Korea
  • Publisher(Ko) :한국전산구조공학회
  • Journal Title :Journal of the Computational Structural Engineering Institute of Korea
  • Journal Title(Ko) :한국전산구조공학회 논문집
  • Volume : 38
  • No :2
  • Pages :075-084
  • Received Date : 2024-10-30
  • Revised Date : 2024-12-07
  • Accepted Date : 2024-12-09
Journal Informaiton Journal of the Computational Structural Engineering Institute of Korea Journal of the Computational Structural Engineering Institute of Korea
  • NRF
  • KOFST
  • crossref crossmark
  • crossref cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close